23787
Status dostępności:
Wypożyczalnia
Są egzemplarze dostępne do wypożyczenia: sygn. 51 (2 egz.)
Strefa uwag:
Uwaga dotycząca zawartości
Zawiera: O autorach; O recenzencie; Wprowadzenie: Dla kogo jest ta książka?; O czym jest ta książka?; Co zrobić, aby jak najlepiej wykorzystać tę książkę; Kody źródłowe; Konwencje typograficzne przyjęte w tej książce; I. Podstawowe pojęcia z obszaru matematyki dyskretnej: 1. Podstawowe pojęcia, notacja, teoria mnogości, relacje i funkcje: Czym jest matematyka dyskretna?; Podstawowa teoria mnogości; Funkcje i relacje; Podsumowanie; 2. Logika formalna i dowody matematyczne: Logika formalna i dowodzenie za pomocą tablic prawdy; Dowody wprost; Dowody nie wprost; Dowodzenie przez indukcję matematyczną; Podsumowanie; 3. Obliczenia w systemach o podstawie n: Zrozumieć liczby o podstawie n; Konwersje między różnymi podstawami; Liczby binarne i ich zastosowania; Liczby szesnastkowe i ich zastosowanie; Podsumowanie; 4. Kombinatoryka z użyciem SciPy: Podstawy zliczania; Permutacje i kombinacje obiektów; Alokacja pamięci; Skuteczność algorytmów siłowych; Podsumowanie; 5. Elementy prawdopodobieństwa dyskretnego: Definicja doświadczenie losowe; Definicje zdarzenia elementarne, zdarzenia losowe, przestrzenie prób; Przykład rzut monetą; Przykład rzut wieloma monetami; Definicja miara probabilistyczna; Twierdzenie podstawowe własności prawdopodobieństwa; Przykład sport; Twierdzenie monotoniczność; Twierdzenie zasada włączeń i wyłączeń; Definicja rozkład jednostajny; Twierdzenie obliczanie prawdopodobieństwa; Przykład rzut wieloma monetami; Definicja zdarzenia niezależne; Przykład rzucanie wieloma monetami; Prawdopodobieństwo warunkowe i twierdzenie Bayesa; Bayesowski filtr antyspamowy; Zmienne losowe, średnie i wariancja; Google PageRank (część I); Podsumowanie; II. Zastosowania matematyki dyskretnej w analizie danych i informatyce: 6. Algorytmy algebry liniowej: Zrozumieć układy równań liniowych; Macierze i macierzowe reprezentacje układów równań liniowych; Rozwiązywanie małych układów równań liniowych za pomocą metody eliminacji Gaussa; Rozwiązywanie dużych układów równań liniowych za pomocą NumPy; Podsumowanie; 7. Złożoność algorytmów: Złożoność obliczeniowa algorytmów; Notacja dużego O; Złożoność algorytmów zawierających podstawowe instrukcje sterujące; Złożoność popularnych algorytmów wyszukiwania; Popularne klasy złożoności obliczeniowej; Podsumowanie; Bibliografia; 8. Przechowywanie i wyodrębnianie cech z grafów, drzew i sieci: Zrozumieć grafy, drzewa i sieci; Zastosowania grafów, drzew i sieci; Przechowywanie grafów i sieci; Wyodrębnianie cech z grafów; Podsumowanie; 9. Przeszukiwanie struktur danych i znajdowanie najkrótszych ścieżek: Przeszukiwanie struktur grafowych i drzew; Algorytm przeszukiwania w głąb (DFS); Implementacja algorytmu przeszukiwania w głąb w Pythonie; Problem najkrótszej ścieżki i jego warianty; Znajdowanie najkrótszych ścieżek metodą siłową; Algorytm Dijkstry znajdowania najkrótszych ścieżek; Implementacja algorytmu Dijkstry w Pythonie; Podsumowanie; III. Praktyczne zastosowania matematyki dyskretnej: 10. Analiza regresji za pomocą NumPy i scikit-learn: Zbiór danych; Linie najlepszego dopasowania i metoda najmniejszych kwadratów; Linia najlepszego dopasowania; Dopasowywanie prostej metodą najmniejszych kwadratów w NumPy; Dopasowywanie krzywych metodą najmniejszych kwadratów z użyciem NumPy i SciPy; Dopasowanie płaszczyzn metodą najmniejszych kwadratów z użyciem NumPy i SciPy; Podsumowanie; 11. Wyszukiwanie w sieci za pomocą algorytmu PageRank: Rozwój wyszukiwarek na przestrzeni lat; Google PageRank (część II); Implementacja algorytmu PageRank w Pythonie; Zastosowanie algorytmu na danych rzeczywistych; Podsumowanie; 12. Analiza głównych składowych za pomocą scikit-learn: Wartości i wektory własne, bazy ortogonalne; Redukcja wymiarowości za pomocą analizy głównych składowych; Implementacja metody PCA z scikit-learn; Zastosowanie metody PCA na rzeczywistych danych; Podsumowanie.
Recenzje:
Pozycja została dodana do koszyka. Jeśli nie wiesz, do czego służy koszyk, kliknij tutaj, aby poznać szczegóły.
Nie pokazuj tego więcej